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SUMMARY

Calculations of mean velocities and Reynolds stresses are reported for the recirculating flow established
in the wake of two-dimensional polynomial-shaped obstacles that are symmetrical about a vertical axis
and mounted in the water channel downstream of a fully developed channel flow for Re=6×104. The
study involves calculations of mean and fluctuating flow properties in the streamwise and spanwise
directions and include comparisons with experimental data [Almeida GP, Durão DFG, Heitor MV.
Wake flows behind two-dimensional model hills. Experimental Thermal and Fluid Science 1993; 7:
87–101] for flow around a single obstacle with data resulting from the interaction of consecutive
obstacles, using two versions of the low-Reynolds number differential second-moment (DSM) closure
model. The results include analysis of the turbulent stresses in local flow co-ordinates and reveal flow
structure qualitatively similar to that found in other turbulent flows with a reattachment zone. It is found
that the standard isotropization of production model (IPM), based on that proposed by Gibson and
Launder [Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid
Mechanics 1978; 86(3): 191–511], with the incorporation of the wall reflection model of Craft and
Launder [New wall-reflection model applied to the turbulent impinging jet. AIAA Journal 1992; 32(12):
2970–2972] predicts the mean velocities quite well, but underestimates the size of the recirculation region
and turbulent quantities in the shear layer. These inadequacies are circumvented by adopting a new cubic
Reynolds stress closure scheme based on that more recently developed by Craft and Launder [A
Reynolds stress closure designed for complex geometries. International Journal of Heat and Fluid Flow
1996; 17: 245–254] which satisfies the two component limit (TCL) of turbulence. In this model the
geometry-specific quantities, such as the wall-normal vector or wall distance, are replaced by invariant
dimensionless gradient indicators. Also, the model captures the diverse behaviour of the different
components of the stress dissipation, oij, near the wall and uses a novel decomposition for the fluctuating
pressure terms. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of the turbulent flow over curved surfaces or hills is of great practical importance
in engineering and aerodynamics applications, for example, in most types of turbomachinery,
flow along guide vanes, and past airfoils. It is also an excellent way of exploring fundamental
aspects of air flow over complex terrain for environmental and meteorological problems, such
as turbulent transfer and diffusion, which play a critical role in determining the transfer of
momentum, heat and moisture in the atmospheric boundary layer. In the case of flow over
hills, the effects of shear and turbulence intensity in the approach flow can strongly affect the
basic flow structure behind the hills by changing the locations of separation and reattachment
on the leeside of a hill. Furthermore, the turbulent flow processes behind rippled sea beds are
considered to be responsible for the sediment transport pattern (see Mueller and Gyr [1]).

The changes in turbulent flow over complex terrain may be caused by various mechanisms.
For example, in neutrally stable conditions, as in the case of a flow over hills, the flow speeds
up over the summit of the hill and slows down in the valley. The changes of mean flow occur
because the streamlines are displaced by the hill due to an induced pressure gradient and shear
stress perturbation. On the leeside, a separated wake region is formed as a result of a strong
adverse pressure gradient established in the leeside of the hill, which changes the flow field not
only in the separation region itself but also over the entire hill. The effect of the pressure
gradient (due to the blockage effect of the hill) a short distance upstream of the hill forces the
boundary layer to undergo a three-dimensional separation. Over steep hills, the boundary layer
separates and rolls up downstream of the separation line to form a system of vortices that
forms an upstream reverse zone. The vortices are deflected laterally and swept around the base
of the hill. Above this zone, the fluid impinges on the hill surface, which can lead to significant
concentrations of pollutants when the plume is incident on the hill. The vortex system will
produce a high-wall shear stress, and the upstream shear boundary layer could amplify this
effect. Near the top of the hill, when the fluid passes over the hill, the strong downflow could
form a down-slope wind storm, which may produce damage to human activity, structure,
forestry, etc. As above, the upstream shear boundary layer could strongly influence the
position and intensity of the down-slope wind storm.

The flow field above the hill can be divided into three regions. Near the surface, in the inner
region, the turbulent scales are small enough to be in local equilibrium and adjust to the local
velocity gradient, which leads to the three components of normal Reynolds stresses increasing
in magnitude. In the intermediate region, above the inner region, the non-linearities and
diffusion processes strongly affect the turbulent structure. Well above the surface, in the outer
region, the large scales of turbulence are not in local equilibrium, and adjust linearly to the
acceleration and curvature of the mean flow as the eddies are advected over the hill. The
streamwise curvature has a significant effect on the behaviour of turbulent flow field. The
magnitude of this effect is dependent upon the ratio of the shear layer thickness, d, to the
radius of curvature, R, of the hill and is naturally influenced by the ratio R to the height of
the hill h.

The dynamics of flow over hills has been considerably investigated in laboratory experiments
by Hunt and Snyder [2], Dumas and Fulachier [3], Durão et al. [4] and Almeida et al. [5], and
in field measurements by Deaves [6] and Mason and King [7]. These studies provide useful
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tests for both theoretical analysis and numerical calculations. The analytical approach, such as
rapid distortion theory (RDT) of turbulence, has contributed significantly to understanding
dynamics and turbulent structures subjected to high deformation rates (see Sajjadi et al. [8]),
but this approach is limited to local linearization assumptions for the full non-linear equations,
and leads to poor predictions for strong turbulent mixing and diffusion. In view of this,
therefore, one is forced to adopt a numerical calculation model, such as a differential
second-moment (DSM) closure, which can incorporate all non-linear effects inherent in these
flows, in particular the mean acceleration, the estimation of Reynolds stresses and to allow
extrapolation to more practical situations to reproduce the flow structure described above with
minimum time and effort.

The DSM closure models are developed to suit the above requirements with improving
computer technology. One of the earlier and frequently cited of such closure models is the
isotropization of production model (IPM) of Launder et al. [9], which has been tested over a
wide range of flows of practical interest. In this model, a systematic representation for the
pressure–strain correlation and turbulent transport terms in derived. Furthermore, the trans-
port equation for the turbulent dissipation rate is derived in conjunction with the Reynolds
stress model. Based on this model, series of second-moment closure models have been
developed by various authors to improve the earlier proposals, see, for example, Lumley [10],
Gibson and Launder [11], Reynolds [12], Fu et al. [13] and Lee [14]. All these models are
calibrated to suit practical turbulent flows. An important contribution is due to Shih and
Lumley [15], who showed that by adding terms quadratic in the Reynolds stresses to the rapid
part of pressure strain correlation, fij2, all the required kinematic constraints can be satisfied,
including the exact two-component limit (TCL) as the wall is approached. Shih and Lumley
[15] found that reasonable agreement with experimental results could be achieved only by
adding selected cubic and quartic products. Fu et al. [13] on the other hand, adopted a cubic
DSM closure model by retaining the full set of cubic terms, which naturally accommodates the
paradoxical effects of (P/o) on the Reynolds stress field. In this model, as the wall is
approached, the stress field does asymptote to a two-dimensional state since, by continuity,
velocity fluctuations normal to the wall fall to zero faster than those parallel to it.

Recently there has been renewed interest in developing second-moment closures that are
fully realizable and satisfy the TCL of turbulence. In these models it has been tried, as far as
possible, to avoid the use of gradient diffusion hypotheses and to represent these processes
arising from the interaction between mean flow and turbulent diffusion directly. Furthermore,
it has been attempted to make these models applicable in the viscous sublayers by integrating
the transport equations right up to the wall itself (see, for example, Craft [16]).

In all DSM closure models of turbulence, the modelling of the pressure–strain term has
proved to be formidable task. Usually, following a common practice, the pressure–strain term
is decomposed into the linear and non-linear (or return to isotropy and rapid) parts
respectively. Many authors obtained analytical expressions for the ‘linear part’ of the pres-
sure–strain rate tensor in terms of the anisotropy of Reynolds stresses, for example, as shown
by Lee [14], the coefficients of the seven independent tensor terms are functions of the
invariance of the Reynolds stress anisotropy. For near-wall flows, various models have been
developed to represent approximately the correct relative levels of the Reynolds stresses in the
vicinity of the wall. However, when these schemes are applied to the axisymmetric impinging
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jet it leads to excessive levels of the turbulent stresses in the vicinity of the stagnation point.
This anomalous behaviour of the wall correction near stagnation points has also been recently
noted by Murakami et al. [17] in a study of a three-dimensional buoyant jet in an enclosure.
Thus, Craft and Launder [18] proposed an alternative formulation for the rapid part of the
pressure reflection model that gives rise to the aforementioned discrepancies when compared
with experiments. For flows over complicated geometries, such as those with strong streamwise
curvature or wavy surfaces, employing the pressure reflection terms to account for the
damping effects from the wall and surfaces leads to serious errors. This is because the pressure
reflection terms usually employ the wall-normal vector or distance in order to determine the
direction and account for the damping that is required. However, in complex flow geometries,
such a wall-normal distance is often not uniquely defined and, depending on the form adopted,
different results are obtained.

A variety of ad hoc wall damping functions are currently used that depend on the unit
normal to the wall. This feature makes it virtually impossible to reliably apply these models to
complex geometries. Consequently, in many applications of second-moment closures to
wall-bounded turbulence, the integration is carried out by matching to the law of the wall
boundary conditions, which do not formally apply to complex turbulent flows. However, the
most disturbing feature here is that many of the commonly used second-moment closures are
not even capable of reproducing law-of-the-wall results for an equilibrium turbulent boundary
layer unless an ad hoc wall reflection term is added. This term typically depends inversely on
the distance from the wall, further compromising the ability to apply these models to complex
geometries.

Thus, in this paper, following Craft and Launder [19], we apply a low-Reynolds number
DSM closure model that does not employ wall distances. Instead, this model relies on
turbulence length scale gradients to indicate where there are strong inhomogeneities in the
flow. This model has been tested in a number of simple flows, including shear-free walls and
surface flows, by Craft and Launder [19] and in more complex geometries by Craft [16]. The
aim of this paper is therefore to apply this new model to the flow over a two-dimensional
model hill, for which experimental data have been reported by Almeida et al. [5], and to
compare its performance with a low-Reynolds number version of Gibson and Launder’s [11]
IPM second-moment closure model.

For the turbulent flow over the two-dimensional model hill considered here, a review may
be obtained from an ERCOFTAC Workshop by Bonnin et al. [20], in which 38 different
numerical calculations, using various turbulence models, were compared with experimental
data of Almeida et al. [5]. The conclusion was that modifications had to be introduced to the
standard high-Reynolds number k–o model to obtain a more realistic recirculation region. The
compilation of results also showed that resolving the viscosity-affected near-wall layer with
either a low-Reynolds number version of the model or with a one-equation model in the
viscous sub-layer yielded recirculation lengths that were in fairly good agreement with the
experimental data. The results obtained from some non-standard wall functions also showed
clearly that the prediction of the separation region depends strongly on the near-wall
treatment. However, all models underpredicted the levels of turbulent kinetic energy k and
shear stress u6 in the separation shear layer region.
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These underpredictions were also noted by Lien [21], who compared three different
turbulence models with the Almeida et al. [5] data. The models adopted by Lien [21] were: a
linear eddy–viscosity model, non-linear eddy-viscosity models that employ expansions of
strain and vorticity components for the Reynolds stresses up to quadratic and cubic products.
He concluded that the cubic variant of the non-linear k–o model yielded the best results for the
separation region, the dip in the wall pressure and peak in the skin friction. Another attempt
was also made by Goldberg and Apsley [22], who used a new eddy–viscosity in the low
Reynolds k–o model and predicted the recirculation flow and mean velocity quite well. Their
calculations also underestimated the turbulent shear stress u6. In this paper we shall also
compare our results with those of both Lien [21] and Goldberg and Apsley [22]. We shall also
demonstrate that by adopting a turbulence model which is fully realizable and satisfies the
TCL of turbulence, better agreement between prediction and experimental data is obtained,
particularly for the Reynolds stresses, in both the recirculation and recovery regions.

2. MODELLING APPROACH

2.1. Go6erning transport equation

Consider an incompressible viscous fluid with the constant density r and kinematic viscosity
n, whose mean characteristic velocity is U0=2.147 m s−1, over a two-dimensional model hill.
The flow field above the hill may be obtained by solving the following coupled equations,
namely the continuity equation, the Reynolds averaged and the Reynolds stress transport
equations:
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where xi= (x, y) are the Cartesian co-ordinates, Ui= (U, V) is the time-averaged velocity
vector, P is the pressure, uiuj are the Reynolds stresses and D/Dt= ((/(t)+U ·9. Equation
(2.3) is the exact DSM Reynolds stress transport equation, which shows a balance between
convection, the production Pij, the pressure correlation Pij, diffusion dij and viscous dissipation
oij. The production term given by
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is exact and does not require modelling, whilst the diffusion term dij is given by
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In Sections 2.2 and 2.3 different forms of the pressure correlation Pij, viscous dissipation oij

and the transport equation governing the dissipation rate o for the IPM and TCL, which are
used in the present investigation, will be introduced respectively.

2.2. IPM model

2.2.1. Pressure strain. The IPM is one of the simplest models for the pressure–strain
correlation in the Reynolds stress equations. The correlation fij is the time-averaged product
of the fluctuating pressure and strain rate and it cannot be measured accurately by experiment;
although it plays a crucial role in the budget of the Reynolds stress tensor uiuj. There are two
contributions to this process, one associated with a non-linear interaction, fij1, which is the
turbulence–turbulence interaction process, and the other, fij2, involving a linear or rapid mean
velocity–turbulence interaction process. The models for these processes adopted here based on
the original proposal of Rotta [23] are
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where k= (u2+62+w2)1/2 is the turbulent kinetic energy.
In a simple shear flow, fij2 acts to diminish the effective generation of u2 by redistributing

it equally to the normal stresses in the x2- and x3-directions. The effect of fij2 is to oppose this
redistribution and hence to reduce the energy flow rate to 62.

However, this model has two weaknesses. From experimental data it has been shown that
increasing (P/o) appreciably altered the orientation of the principal axes of stress field relative
to those of the strain field. Secondly, the model cannot satisfy the exact two-dimensional limit
as the wall is approached: faa2=0 if ua=0 (Lumley [10]), where ua is the fluctuating velocity
in direction xa. This problem has been circumvented by Shih and Lumley [15] who added
selected cubic and quartic products to fij2 in the Reynolds stress, so that all the required
kinematic constraints can be satisfied, including the exact two-dimensional limit as the wall is
approached.
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2.2.2. Near-wall modifications for pressure–strain term. The presence of a rigid boundary
necessitates a correction to these processes in order to reduce the intensity of velocity
fluctuations normal to the wall in the vicinity of a surface. Gibson and Launder [11] adopted
the following form:

f ij1
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Here nk are unit vectors normal to the wall, L is the length scale given by L=k3/2/o and f is
the wall proximity function.

The form of f ij1
w , given by Equation (2.5), always ensures that the correction to fij1 acts as

a sink in that budget for the component of normal Reynolds stress perpendicular to the wall
and as a source in the other two components of normal Reynolds stresses. The action of f ij2

w ,
however, depends on the nature of the mean strain field.

More recently, Craft and Launder [18] considered a new form of f ij2
w that involves linear

products of the velocity gradient and Reynolds stress tensors. The form adopted by them may
be expressed as
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In a simple shear flow, only the first of the three terms in Equation (2.7) affects the normal
stresses; a fraction of the turbulent kinetic energy generation is ‘redistributed’ from the
component normal to the wall to the other components. Here, we use Equation (2.7) in order
to overcome the strong inhomogeneities in the near-wall region.1

1 This was illustrated by Sajjadi and Aldridge [30] for flow over asymmetrical bed forms.
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2.2.3. Triple correlations. In the present work, the triple correlations are approximated by the
Hanjalic and Launder [24] proposal
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2.2.4. Dissipation rate equation. The viscous dissipation tensor, oij, is modelled by
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where

õ=o−2n
�(
k
(xl

�2

is a quantity that vanishes at the wall.
The IPM model coefficients are tabulated in Table I.

2.3. TCL model

The model adopted here is based on that originally proposed by Craft and Launder [19].

Table I. The coefficients used in IPM model.

co2 co3 csc1 c2 c %1 c %2 cl co co1

1.8 1.45(1−fs)+2fs 1.92 0.3 0.110.6 0.5 0.3 2.44 0.15
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2.3.1. Length scale gradient. The present model adopts two inhomogeneous indicators based on
gradients of the turbulent length scale Lk3/2/o. The parameter

Ni
(L
(xi

has been used by some authors, see, for example, Launder and Tselepidakis [25]. For the
present purpose it is desirable to normalize Ni so that it flags regions of strong inhomogeneity
rather than the magnitude of the length-scale gradient itself. This is achieved by defining di as

di
Ni

[a+ (NkNk)1/2]

where the coefficient a=0.5 and (NkNk)1/2 is typically about 2.5 in an equilibrium near-wall
turbulent region.

In the buffer region of wall shear flow, the length scale levels out, giving undesirably small
levels of di where there is a highly inhomogeneous region. The problem is circumvented by
introducing flatness factor A (see Lumley [10]) so that
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A

(

(xi

(LA) and di
A=
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A

a+ (Nk
ANk

A)1/2

A becomes unity in isotropic turbulence and vanishes at a wall, where the turbulent fluctua-
tions reduce to a TCL.

2.3.2. Pressure correlation. In near-wall flows the pressure correlation includes two terms, the
pressure strain, denoted by fij, and pressure diffusion, dij

p, which is equal to zero in
homogeneous flows. In this model the decomposition of Pij is written as
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In Equation (2.11), A2 and A are the invariants of the Reynolds stress anisotropy tensor
defined as A2=aijaij, A=1−9/8(A2−A3), where A3=aijajkaki and aij is defined by Equation
(2.8).

The term f ij1
inh can be interpreted as being an inhomogeneous correction to f*ij1 because it

involves the length-scale gradient term di. The f ij2
inh correction to the mean strain-dependent

part has a significant effect only in an impinging flow.
The pressure diffusion term adopts the following form:

puk/r= − (0.5dk+1.1dk
A)(nokAA2)1/2[cpd1A2+cpd2Re t

−1/4 exp(−Ret/40)]

where

cpd1=1.0+2.0 exp(−Ret/40), cpd2=0.4

2.3.3. Dissipation tensor. The present work employs the following composite form specifically
to address the behaviour of oij near a wall as indicated by the direct numerical simulation
(DNS) data of Kim et al. [26]:

oij=
�
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fR= (1−A) min
��Ret

80
�2

, 1.0
n

, fo=A1/2, fh=1−exp
�

−
Ret

50
�

The gradient terms of o %ij are only effective across the viscous sub-layer where k gradients are
steep. The term o¦ij principally has the effect of producing the dip in o12 in the near-wall DNS
studies. The term o*ij is designed to improve the behaviour of oij at a free surface where there
are significant inhomogeneous effects and the turbulent Reynolds number is large.
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2.3.4. Triple correlations. In contrast to the IPM model, the triple correlations for the TCL
model are obtained from an algebraic simplification of their transport equations, which may
be cast as

Duiujuk

Dt
=Pijk

1 +Pijk
2 +fijk+dijk−oijk (2.17)

where the production terms

Pijk
1 =uiuj

(ukul

(xl

+uiuk
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+ukuj

(uiul

(xl

Pijk
2 = −uiujul

(Uk

(xl

−uiukul

(Uj

(xl

+ukujul

(Ui

(xl

are exact. Invoking the Millionshtchikov [27] hypothesis for the fourth-order moments
appearing in the diffusion term dijk leads to

dijk= −
(

(xl

(uiuj ukul+uiuk ujul+ukuj uiul)

whilst oijk is modelled as −2ouiujuk/k. The pressure correlation fijk is modelled as

fijk=fijk1+fijk2+f ijk
inh

where

fijk1= −ct1

o

k
uiujuk

fijk2= −ct2Pijk
2 +c %2t

�
uiujuk

(Ul

(xk

+uiukul

(Ul

(xj

+ukujul

(Ul

(xi

�
f ijk

inh=ctw
�(uiun

(xr

djk+
(ujun

(xr

dik+
(urun

(xr

dji
�

ulurd l
Adn

A

represent a return to isotropy term, a mean strain-dependent term and an inhomogeneity
related term respectively, and the coefficients are taken as

ct1=4.2, ct2=1.0, c %t2=0.2A, ctw=0.5

Following Craft [16], the coefficient ct2 is taken as unity since inclusion of the Pijk
2 term tends

to cause numerical instabilities in the code. The other coefficients are tuned to give good
agreement with available boundary layer data. The triple moments are then obtained by
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Table II. The coefficients used in TCL model.

co2co1 Ad c %o2 co3 co4 co5 co cs c %s

1.0 1.55 1.0 1.0 0.09 1.01.0 0.11
1.92

1+0.7Ad
A2

max(0.2, A)

neglecting the left-hand side of Equation (2.17), and solving the resultant algebraic relations
for uiujuk.

2.3.5. Dissipation rate equation. The dissipation rate õ is obtained from the transport equation
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k

+
(

(xl

��
ndlk+couluk

k
o

� (õ
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(2.18)

These TCL model coefficients are given in Table II.

3. NUMERICAL SCHEME

The numerical scheme adopted here is based on the fully conservative, structured finite volume
method within which the volumes are non-orthogonal and collocated such that all flow
variables are stored at one and the same set of notes. To ease the task of discretization and to
enhance the conservative property of the scheme, a Cartesian decomposition of the velocity
field is used. The solution algorithm is iterative in nature, approaching the steady solutions
with the aid of a pressure–correction scheme.

As mentioned in the above paragraph, the discretization process is preceded by a transfor-
mation of the Cartesian co-ordinates of the governing equations to the non-orthogonal
co-ordinates j and h using the Jacobian transformation matrix. Thus, the transport equation
for any scalar property F may be expressed in non-orthogonal direction as

(

(j

�
rU (j,h)F−J−1aF

(F
(j

�
+
(

(h

�
rV (j,h)F−J−1bF

(F
(h

�
=JSF (3.1)

where U (j,h)=Uyh−Vxh and V (j,h)=Vxj−Uyj are contravariant velocity components, J is
the Jacobian of the transformation, SF is the source terms including diffusive terms, pressure
terms in the momentum equation and aF=GF(yh

2 +xh
2) and bF=GF(yj

2 +xj
2), where GF is

isotropic diffusivity and the subscripts j and h denote partial differentiations.
Equation (3.1) is integrated over the volume to yield a balance of face fluxes and

volume-integrated net source
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(rU (j,h))EFE− (rU (j,h))WFW+ (rV (j,h))NFN− (rU (j,h))SFS

=JSF+ [(aFJ−1)E+ (aFJ−1)W+ (bFJ−1)N+ (bFJ−1)S]FP

− [(aFJ−1)EFE+ (aFJ−1)WFW+ (bFJ−1)NFN+ (bFJ−1)SFS]

The convection fluxes for the momentum equations are approximated with a higher-order
upstream scheme QUICK of Leonard [28], and for the turbulent transport equation by a total
variation diminishing (TVD)-type MUCL scheme of van Leer [29]. The latter is applied to the
transport equations governing turbulence properties because the QUICK scheme has a
tendency to provoke oscillations in regions of steep property variations. With these approxima-
tions, together with appropriate expressions for diffusive fluxes, cast in the finite volume
integrated form (2.2) and (2.3), a weighted-average equation may be obtained of the form

APFP=%
i

AiFi+JSF, i=E, W, N, S

where F represents any of the momentum or any of the scalar transport components with
corresponding sources SF, while AP=�i Ai and the A coefficients contain convective and
diffusive contributions linking neighbouring nodes to P. For more details the reader is referred
to the work of Sajjadi and Aldridge [30] and Sajjadi and Waywell [31].

The numerical scheme adopted in this study converged after 750 iterations for the IPM
model and 1200 for the TCL model. The typical CPU time per iteration was about 4 s for the
IPM model and about 6 s for the TCL model. The numerical scheme is very robust and no
major difficulty was ever encountered.

The shape of the hill is the inverse of a fourth-order polynomial. More detail description can
be found in Almeida et al. [5]. A grid refinement exercise was carried out over the computa-
tional domain, of physical dimensions x(−100–500 mm) and y(0–170 mm), and Figure 1
shows the final 120×120 grid that was found to give grid-independent results. As can be seen,
a large number of nodes are concentrated in the near-wall regions in order to capture the steep
gradients found.

Figure 1. Computational grid.
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3.1. Initial and boundary conditions

The inlet condition for mean velocity U, V, Reynolds stresses u2, 62, u6, the turbulent
kinematic energy and the dissipation rate were obtained by solving a separate one-dimensional
calculation of a fully developed channel flow.

At the outflow plane, we set

V=
(U
(x

=
(k
(x

=
(o

(x
=
(u2

(x
=
(62

(x
=
(u6
(x

=0

The boundary condition at the top and bottom surfaces are the no-slip condition on the
velocity and Reynolds stress components, whilst for the dissipation equation we set

o=2n
�(
k
(xj

�2

4. RESULTS AND COMPARISON

4.1. Comparison with the experiment

In this section we present detailed investigation of the flow over the two-dimensional model
hill mounted in the water channel at Re=6×104. The results of computations for both the
IPM and TCL low-Reynolds number DSM models will be compared with the laboratory
experiment of Almeida et al. [5].

The comparison of the mean streamwise velocity profile U, predicted with both the IPM and
TCL models, with experimental data at various x locations along the channel is shown in
Figure 2.2 As can be seen from this figure, a considerably thin boundary layer along the
upstream surface of the hill is formed near the reattachment point, which accelerates strongly
as it approaches the top of the hill. The deflection of the flow by the hill is associated with the

Figure 2. Mean velocity profiles U at various x stations; — , TCL model; � � �, IPM model;
�, experimental data of Almeida et al. [5].

2 Note that in this paper all profiles for the mean and turbulent stresses are plotted on every fourth grid point.
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Figure 3. Mean velocity vectors for TCL model.

maximum values of the mean streamwise velocity above the hill of U/U0=1.08 at y/h=1.003
for the IPM model and U/U0=1.21 at y/h=1.028 for the TCL model. They correspond
approximately to the laboratory experiment value of U/U0=1.27 at y/h=1.036. Therefore,
both models provide a good prediction for the mean streamwise velocity. On the whole, both
models capture the main flow features and agree well with the experimental data.

It is now interesting to consider the evolution of the separated shear layer emerging from the
top of the hill. Figure 3 shows the predicted velocity vectors for the flow over the hill using the
TCL Reynolds stress model. As can be seen from this diagram there is a recirculation region
behind the hill and the flow reattaches at x/h=4.82, which is slightly higher than the
experimental value of x/h=4.5. In contrast, the IPM model predicts an earlier reattachment
at x/h=3.9. This figure also shows that the wall boundary layer formed at the rising surface
of the hill remains quite thin up to the downstream crest. Then it spreads as the separation
point is approached, where it becomes a free shear layer detached from the surface in a way
qualitatively similar to that reported by Buckles et al. [32].

In Figures 4 and 5 the normal stresses u2 and 62 predicted by both the IPM and TCL
models, are compared with experimental data. These results show a region of high-velocity
fluctuations along the shear layer downstream of the hill in a way similar to that found in the
laboratory experiment. Peak values of normal stresses occur in the zones characterized by
the highest mean velocity gradients. The turbulent flow is anisotropic, with values of u2

Figure 4. Turbulent normal stress profiles u2 at various x stations; — , TCL model; � � �, IPM model;
�, experimental data of Almeida et al. [5].
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Figure 5. Turbulent normal stress profiles 62 at various x stations; — , TCL model; � � �, IPM model;
�, experimental data of Almeida et al. [5].

consistently higher than those of 62, with the exception of the separation zone. In the free
stream, the levels of turbulence anisotropy reach those of the undisturbed flow, with vertical
velocity fluctuations half of that in the longitudinal direction. As can be seen from these
figures, the IPM model underpredicts the turbulent velocities for both u2 and 62. In contrast,
the TCL model provides a better prediction for both of these components of Reynolds stresses.
It is worth noting that the TCL model also provides a much better recovery rate for both
components of the normal stresses beyond the distance of x=200 mm downstream of the hill.

The distribution of the turbulent shear stress u6 is shown in Figure 6, which quantifies the
turbulent diffusion along the shear layer and is consistent with the direction of the mean flow.
The maximum values occur along the direction of the normal stresses and are larger than those
found downstream of a three-dimensional surface mounted hill [4]. As can be seen, the
turbulent shear stress is underpredicted in the recirculation region. It is probably this
underprediction that results in the overprediction of the reciruclation strength. Further
downstream, at around x=130 mm, this underprediction becomes less and a better agreement
between the TCL model and the experimental data is obtained. At x=150 mm and beyond a
very good agreement between the TCL model and the experiment is obtained. Note, inciden-
tally, that up to x=200 mm the IPM model still underpredicts the peak shear stress close to
the wall.

Figure 7 shows the distribution of the turbulent kinetic energy k, in which the experimental
data is based on k=0.5(u2+262) since no experimental data is available for the turbulent

Figure 6. Turbulent normal stress profiles u6 at various x stations; — , TCL model; � � �, IPM model;
�, experimental data of Almeida et al. [5].
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Figure 7. Turbulent normal stress profiles k at various x stations; — , TCL model; � � �, IPM model; �,
experimental data of Almeida et al. [5].

normal stress w2. As can be seen from this figure, the turbulent kinetic energy increases with
the distance from the top of the hill up to the reattachment point and then decreases
significantly due to the upward tilting of the flow at the upstream face of the hill. This is
because downstream of the top of the hill, the overall effect of positive shear strains is to
increase turbulent intensity by the destabilizing effect of streamline curvature, while along the
windward face of the hill the opposite signs of the shear strains suppress turbulence by
stabilizing curvature effects. The distribution of the turbulent kinetic energy shows maximum
values in the reattachment zone, which are similar to the distribution of Reynolds normal and
shear stresses.

The results depicted in Figures 4–7 show that maximum values of the normal and shear
stresses as well as the turbulent kinetic energy occur in the separating shear layer upstream of
reattachment. As expected, the distribution of Reynolds normal stresses in local flow co-
ordinates does not identify any change in sign and exhibits maximum values in the reattach-
ment zone. Following the analysis of Chandrsuda and Bradshaw [33] and Wood and Bradshaw
[34], the effect of the shear strain along the streamline direction may be exerted non-locally via
the splitting of large eddies at reattachment. This is more likely to cause the observed decrease
in Reynolds stresses than the alternative mechanism of alternate downstream and upstream
deflection of large eddies at reattachment. The processes of turbulent mixing over most of the
flow regime may be described as a response to changes in the mean rates of strain, with the
turbulence ‘memory’ determining how much of the upwind flow is reflected in the measured
stresses.

Two aspects of the present flows are of prime practical significance for the reason mentioned
above. First, the extent and strength of the recirculation zones established in the leeside of the
obstacles, because when separation occurs, for example, in atmospheric flows, it will change
the wind field not only in the separation region itself but over the entire hill, so that defining
its limits becomes a prerequisite of establishing the overall flow field. Second, the mean
velocity speed-up on the hill top holds obvious interest both for wind power engineers and for
those interested in predicting wind loading on building and structures, and many investigations
of hill flows are aimed at just quantifying this features.

The present computational results suggest that the mean velocities obtained by both IPM
and TCL agree reasonably well with the experimental data. However for IPM, there are large
discrepancies in prediction for the turbulent stresses in the wake region. In contrast the TCL
model provides much improvement for turbulent stresses particularly in the wake region.
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4.2. Comparing with other turbulent models

We shall now compare the performance of the IPM and TCL models with two recently
developed low-Reynolds number k–o turbulent models used to calculate the flow field over the
same two-dimensional model hill [22,35].

In the low-Reynolds number k–o model of Goldberg and Apsley, the eddy viscosity
nt=cmfmk2/o is based on the following transport equation:

Drk
Dt
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where the time scale realizability is maintained by using

Tt= (k/o) max(1, z−1), z=
Ret/ct

This imposes the Kolmogorov scale 
n/o on the source and sink terms of Equation (4.2) for
Ret�1. The effect of the additional source term

E=
2Akco2

ctAm

mfmS2 e−Af 
ok /6S

is to cancel the non-zero destruction term co2ro in the immediate vicinity of walls, where
S=
2SijSij, Sij=(Ui/(xj+(Uj/(xi and the total kinetic energy ok=
UiUi/2+k. The near-
wall damping function forces the relation nt�62Tt through

fm=
1−e−Am Ret

1−eRet
max(1, z−1)

The model coefficients are tabulated in Table III.
Figure 8 shows the comparison of IPM and TCL with the above models at the approximate

reattachment point x/H=4.286. The prediction shows that the TCL model slightly overesti-
mates the mean horizontal velocity at the height of y/H:1.5 (Figure 8(a)) but gives a better
estimation for the Reynolds shear stress compared with other models (Figure 8(b)). Note
incidentally that the TCL model still underestimates the turbulent shear stress when compared
with experimental data. Therefore, is seems that there is still a need for improving the TCL

Table III. The coefficients used by Goldberg and Apsley [22].

AfAmsosk ctco2co1cm Ak

1.3 0.01 0.214 0.05 
20.09 1.44 1.92 1.0
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Figure 8. (a) Non-dimensional mean velocity profiles U/U0 and (b) non-dimensional turbulent shear
stress profiles −u6/U0

2 at the location x/h=4.286; – -– , TCL model; — , IPM model; · · · Lien and
Leschziner model; - - -, Goldberg and Apsley model; �, experimental data of Almeida et al. [5].

model further, in particular for the flow behind a hill where substantial turbulent mixing takes
place.

5. CONCLUSION

In this paper computational results for turbulent flow over a large-amplitude hill mounted in
a water tunnel at Re=6×104 is reported and is compared with laboratory measurements of
Almeida et al. [5]. The calculations performed here, just like the experiment of Almeida et al.
[5], correspond to a neutrally stratified flow regime characterized by a ratio of the upstream
shear layer thickness to the height of the hill, which is less than unity. The aim of this
investigation was to establish the effect of streamline curvature on the nature of the turbulent
flow over the hill and to develop a realizable turbulence model in order to allow extrapolation
to more practical situations for the purpose of improving our knowledge of complex flow
situations of engineering interest.

The outcome of calculations shows that a flow structure with a thin boundary layer is
established on the rising surface of the hill and accelerates up to the crest. The separation point
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occurs on the downstream surface of the hill and extends up to x/h=4.821. The curvature of
the flow imposes mean velocity effects on the turbulent flow resulting in the establishment of
a zone of high-intensity velocity fluctuations along the shear layer downstream of the top of
the hill, which are rapidly suppressed with the approach of the reattachment zone. The results
suggest that the upper half of the shear layer interacts with the outer flow in a way similar to
that of a plane shear flow.

The results also show that the turbulent kinetic energy increases with the distance from the
top of the hill up to the reattachment point and then decreases significantly due to the upward
tilting of the flow at the upstream face of the hill. This is because downstream of the top of
the hill the overall effect of positive shear strains increases turbulence intensity by the
destabilizing effect of streamline curvature, while along the windward face of the hill the
opposite sign of the shear strains suppress turbulence by stabilizing curvature effects.

To accurately reproduce the behaviour of the turbulent stresses, it is necessary to consider
the differing responses of the component variances to straining by the mean flow, to changes
in the dissipation rate, to the effort of turbulence ‘memory’ and to sudden changes in
turbulence length scales as the wake flow is approached. In this respect, the TCL model
adopted here proved to be more superior because, unlike the IPM model, it is not strongly
biased toward the near-equilibrium situations and avoids the use of gradient diffusion model
for triple correlations. Also in the TCL model, the geometry-specific quantities, such as the
wall-normal vector or wall distance, are replaced by invariant dimensionless gradient indica-
tors in order to correct for strong inhomogeneity in the wall vicinity and the damping of the
fluctuating velocity component normal to the wall. Furthermore, the model uses a new
decomposition for the fluctuating pressure terms, and captures the diverse behaviour of the
different components of the stress dissipation near the wall.

In conclusion, the low-Reynolds number TCL model adopted here provides a much better
tool for predicting the flow field and turbulent stresses for flows over complex geometries as
was demonstrated in the present study. It is also shown here that the level of turbulent stresses
predicted by the TCL model agrees much better with the laboratory measurements for
separated flow of two-dimensional model hill than that predicted by the conventional
low-Reynolds number IPM model. In particular, better agreement between the TCL model
and the measurements for turbulent stresses is obtained in the far-field recovery region.
However, in the separation region, the TCL model still underestimates the level of turbulence
stresses. This point needs to be addressed and clearly requires further study in order to
improve the present TCL model.
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